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ON APPROXIMATE SOLUTION OF THREE DIMENSIONAL MIXED
BOUNDARY VALUE PROBLEM OF ELASTICITY THEORY AND

SOME OF ITS APPLICATIONS TO NANOSTRUCTURES
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Abstract. In the paper the 3D mixed boundary value problem of elasticity

theory for the orthotropic beam with a rectangular cross-section is studied. By

means of the Vekua theory the problem is reduced to two dimensional problem.

The numerical solution is obtained by means of the finite difference schemes. The

initial problem is reduced to the system of algebraic equations. The convergence

of the iteration process is proved, the error is estimated. The results could be

applied to big size beams as well as to nanostructures whose size is more than 10

nm [4,5].
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Statement of the problem.

In the paper 3D mixed boundary problem is considered for the paral-
lelepiped type isotropic beam with a constant width 2h. We admit that
static forces act to the upper and law boundary of the beam. At these
boundaries the displacement vector is given. At the lateral surface the
components of external tension tensor are given (Fig.1).

Fig.1.
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Let us consider the system of elasticity theory for the displacement:
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where ui(x, y, z), (i = 1, 2, 3) are the displacement components, fi(x, y, z),
(i = 1, 2, 3) are components of the mass forces, c11, c22, c33, c12, c13, c23,
c44, c55, c66 are the elasticity constants for the orthotropic body.

In the isotropic case

c11 = c22 = c33 = λ+2µ =
E(1− ν)

(1 + ν)(1− 2ν)
, c44 = c55 = c66 = µ =

E

2(1 + ν)
,

c12 = c13 = c23 = λ =
Eν

(1 + ν)(1− 2ν)
,

where λ and µ are the Lame constants, E is Young’s modulus, ν is Poisson’s
coefficient.

The boundary conditions are given for the external forces at the lateral
surface:

σx = F 1
k (x, y, z), τxy = F 2

k (x, y, z), τxz = F 2
k (x, y, z) : Dk (k = 1, 3);

σy = F 1
k (x, y, z), τxy = F 2

k (x, y, z), τyz = F 2
k (x, y, z) : Dk (k = 2, 4);

(2)

and the beam bases S±, (i = 1, 2, 3) are fixed

ui(x, y, z) = 0. (3)

The algorithm for the approximate solution

Here we consider the stress-strain 3D problem and reduce this problem
to 2D by means of Vekua method [1,2]. We represent the solutions by Leg-
endre polynomials with respect to the width of the beam. We represent the
components of displacement vector as Fourier-Legendre series with respect
to the Legendre polynomials differences:

uj(x, y, z) =
N∑

i=1,3···

i
uj(x, y)(Pi+1(z/h)− Pi−1(z/h)), (j = 1, 2);

u3(x, y, z) =
N∑

i=1,3···

i+1
u

3(x, y)(Pi+2(z/h)− Pi(z/h)),

(4)

where Pi(z/h) are the Legendre polynomials.
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By the operation of projection on 2D area for the definition of the coeffi-
cients from (1) we obtain the recurrent system of the elliptic type differential
equations:
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Suppose
−1
u j ≡ 0 (j = 1, 2),

1
u3 ≡ 0, then the system (5) will be closed

and the coefficients αi, βi, fj will be given by:

αi =
2

2i+ 1
, βi =

1

αi+1

+
1

αi−1

,

k

f j(x, y) =

(
k +

1

2

) +h∫
−h

fj(x, y, z)Pk

(z
h

)
dz (j = 1, 2, 3).

At the lateral surface of the beam the condition (2) could be represented
by means of Legendre polynomials in the form:
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(6)

The system of differential equations (6) could be represented in the form
of three-point operator [2,3]

P
i−2

V +Q
i

V +R
i+2

V =
i+1

G −
i−1

G , i = 1, 3, . . . , N. (7)

Analogously for the boundary conditions we obtain

p
i−2

V +q
i

V +r
i+2

V =
i
g, (8)

where P, p,Q, q, R, r are the (3× 3) matrix differential operators

V i−2 = (ui−2
1 , ui−2

2 , ui−1
3 )−1;V i = (ui1, u

i
2, u

i+1
2 )−1;V i+2 = (ui+2

1 , ui+2
2 , ui+3

3 )−1,

are vector columns for unknown functions, and

Gi+1 −Gi−1 = (f i+1
1 − f i−1

1 , f i+1
2 − f i−1

2 , f i+2
2 − f i3)

−1; gi = (F i
1, F

i
2, F

i+1
3 )−1,

are vector columns for given functions.
Let’s rewrite the system (7),(8) in the form:

Q
i

V = −P
i−2

V −R
i+2

V +
i+1

G −
i−1

G , (9)

q
i

V = −p
i−2

V −r
i+2

V +
i
g . (10)

For the system (9), (10) any iteration method is applicable (for example
Zeidel’s method):

Q
i

V (s) = −P
i−2

V (s) −R
i+2

V (s−1) +
i+1

G −
i−1

G ,

q
i

V (s) = −p
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i
g, s = 1, 2, · · · .

For the solution of two dimensional problems we use the finite-difference
schemes. According to this method we obtain the system of algebraic equa-
tions with the matrix of three diagonal blocks. By the inversion of blocks
and applying the Zeidel’s method (internal iteration) at each step of the
iteration process a matrix successive overrelaxation method is used. The

accuracy of this method is

∣∣∣∣ iV s −
i

V s−1

∣∣∣∣ < ε (s- is the number of iterations,

ε- is the accuracy). As the matrix is symmetrical and positively defined,
the process is convergent.

At the middle of the beam (rectangle D) we introduce the net
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Ω =
{
(xi, yj) = (ihx, jhy) ∈ D; i = 1, 2, . . . , n1, j = 1, 2, . . . , n2;

hx =
a

n1 − 1
;hy =

b

n2 − 1

}
.

Applying the finite-difference scheme to the initial system we obtain:

−S1ξ⃗1 +W1ξ⃗2 = −Ψ⃗1,

Viξ⃗i−1
− Siξ⃗i +Wiξ⃗i+1

= −Ψ⃗i,

Vn1 ξ⃗n1−1
− Sn1 ξ⃗n1 = −Ψ⃗n1 .

(11)

The first i = 1 and the last i = n1 corresponds to the boundary conditions,
also the boundary conditions contain the matrices for j = 1 and j = n2,
1 < i < n1. At the system (11) Vi, Si,Wi there are three diagonal matrices
of n2 order, each element of which is a three diagonal matrix, ξ vectors j
order components of which are the U vector-function components values at
the points (xi, yj).

Analogously, are constructed ψ⃗i vectors

ξ⃗i =



U1(xi, y1)
U2(xi, y1)
U3(xi, y1)
· · · · · ·
U1(xi, yj)
U2(xi, yj)
U3(xi, yj)
· · · · · ·
U1(xi, yn2)
U2(xi, yn2)
U3(xi, yn2)


, ψ⃗i =



f1(xi, y1)
f2(xi, y1)
f3(xi, y1)
· · · · · ·
f1(xi, yj)
f2(xi, yj)
f3(xi, yj)
· · · · · ·
f1(xi, yn2)
f2(xi, yn2)
f3(xi, yn2)


.

The system of finite difference equations can be solved by the method
of internal iteration. Series sequentially approximation will be given by

Siξ⃗
(m)
i = ω{Viξ⃗(m)

i−1 +Wiξ⃗
(m−1)

i+1 + ψ⃗i}

+(1−ϖ)Siξ⃗
(m−1)

i, m = 1, 2, . . . , n1,

where m is a number of iterations, ϖ is parameter of relaxation. If ϖ = 0,
we have simple iteration and for ϖ = 1 Zeidel’s iteration.

Below two numerical examples are given in the case when the normal
forces are applied to the lateral surface of the beam and the other part of
the beam surface is free.
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Numerical examples
We suppose:

σx = −P, τxy = 0, τxz = 0 : D1;

σx = 0, τxy = 0, τxz = 0 : D3;

σy = −P, τxy = 0, τyz = 0 : D2;

σy = 0, τxy = 0, τyz = 0 : D4;

and
σx = −P, τxy = 0, τxz = 0 : D1;

σx = 0, τxy = 0, τxz = 0 : D3;

σy = 0, τxy = 0, τyz = 0 : D2 ∪D4;

also the following non-dimensional quantities are given: the size of the beam,
the division number, the number of Legendre polynomials and the elasticity
constants.

1. For the coal beam

2h = 0.6; 0.8; 1.0; a = b = 1.98; hx = hy = 0.09; Nx = Ny = 22; N = 3, 5;

c11 = 1.03 · 106; c12 = c13 = 3.52 · 105; c22 = c33 = 1.53 · 106;
c23 = 4.35 · 105; c44 = 5.5 · 105; c55 = c66 = 3.6 · 105;

ν = 0.3; E = 5.5 · 9.81 · 107.
The results of calculations are given in Table 1.

Table 1.

2. These results could be applied to nanomaterials whose size is more
than 10 nm [4,5]. In the isotropic, homogeneous and thermodynamically
stable materials Poisson’s coefficient varies between 1 and 0.5 [7]. For carbon
nanomaterials it varies between 0.29 and 0.16 [6,7], Young’s modulus is
about 1TPa, as of diamond. For the nanomaterials of width about 20
nanometer Poisson’s coefficient is about ν = 0.3 [6,7].

The results of calculations are given in Table 2.
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Table 2.

Conclusion. By the algorithm suggested above we can find displace-
ments at any internal point of the beam and then find strain tensor com-
ponents.

It is clear from numerical examples: a) The stresses field vanishes inside
the beam; b) In case of rigid fixation of top and bottom bases, enhance-
ment of beam thickness causes enhancement of normal stresses in the middle
plane; c) In the formula of expansion of Legendre Polynomials (4) it is neces-
sary to take many members, in order to describe more precisely distribution
of stresses at the part of the boundary, where the outer forces are applied.
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